Identification and characterization of Xenopus tropicalis common progenitors of Sertoli and peritubular myoid cell lineages

نویسندگان

  • Tereza Tlapakova
  • Thi Minh Xuan Nguyen
  • Marketa Vegrichtova
  • Monika Sidova
  • Karolina Strnadova
  • Monika Blahova
  • Vladimir Krylov
چکیده

The origin of somatic cell lineages during testicular development is controversial in mammals. Employing basal amphibian tetrapod Xenopus tropicalis we established a cell culture derived from testes of juvenile male. Expression analysis showed transcription of some pluripotency genes and Sertoli cell, peritubular myoid cell and mesenchymal cell markers. Transcription of germline-specific genes was downregulated. Immunocytochemistry revealed that a majority of cells express vimentin and co-express Sox9 and smooth muscle α-actin (Sma), indicating the existence of a common progenitor of Sertoli and peritubular myoid cell lineages. Microinjection of transgenic, red fluorescent protein (RFP)-positive somatic testicular cells into the peritoneal cavity of X. tropicalis tadpoles resulted in cell deposits in heart, pronephros and intestine, and later in a strong proliferation and formation of cell-to-cell net growing through the tadpole body. Immunohistochemistry analysis of transplanted tadpoles showed a strong expression of vimentin in RFP-positive cells. No co-localization of Sox9 and Sma signals was observed during the first three weeks indicating their dedifferentiation to migratory-active mesenchymal cells recently described in human testicular biopsies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peritubular myoid cells have a role in postnatal testicular growth

FSH stimulates testicular growth by increasing Sertoli cell proliferation and elongation of seminiferous cords. Little is known about the peritubular myoid cells in testicular development. In order to investigate the role of peritubular myoid cells in early testicular growth in rodents, two traditional models to induce testicular growth were used: FSH treatment and hemicastration. In order to a...

متن کامل

Isolation and Characterization of Human Induced Pluripotent Stem Cells-Derived Mesenchymal Progenitors

Purpose: Isolating human induced pluripotent stem cells (hiPS)-derived mesenchymal progenitors as a new source of mesenchymal cells which can differentiate into different lineages like adipose and bone. Materials and Methods: After 7 days of hiPS1 culture on matrigle coated dishes, spindle like cells around colonies were removed by cell scraper. These cells that had mesenchymal like morphology ...

متن کامل

Peritubular myoid cells from immature rat testes secrete activin-A and express activin receptor type II in vitro.

The expression of activin type II and IIB receptors and inhibin alpha-, beta A-, and beta B-subunit messenger RNAs (mRNAs), and the secretion of immunoreactive and bioactive activin during culture of testicular peritubular myoid cells and peritubular myoid cell lines were studied. Cultured peritubular myoid cells and cell lines expressed high levels of inhibin beta A-subunit mRNA and some inhib...

متن کامل

Sertoli Cells Maintain Leydig Cell Number and Peritubular Myoid Cell Activity in the Adult Mouse Testis

The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) s...

متن کامل

Sertoli Cell Wt1 Regulates Peritubular Myoid Cell and Fetal Leydig Cell Differentiation during Fetal Testis Development

Sertoli cells play a significant role in regulating fetal testis compartmentalization to generate testis cords and interstitium during development. The Sertoli cell Wilms' tumor 1 (Wt1) gene, which encodes ~24 zinc finger-containing transcription factors, is known to play a crucial role in fetal testis cord assembly and maintenance. However, whether Wt1 regulates fetal testis compartmentalizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016